
Improving the Efficiency of Cache Updating
Process in Wireless Mobile Networks

Jenilet J*,.E.Nagarajan **

*P.G Student, Sathyabama University,

Chennai -600 119.
**Asst.Poffessor, Sathyabama University,

Chennai-600 119.

Abstract- To reduce network delay and bandwidth gain in the
MANETs environments using cache updating process. In
cache updating, to update the cache nodes using pull-based
algorithm. Whereas, the pull-based algorithm, the cache ask
to the data source for updating the data item into the cache. In
this algorithm implements prefetching and piggybacks the
data item from the data source. In this paper we proposed
Decentralized Distributed Cache Updating Process, where the
Query directory is fixed based on the storage capacity. If the
capacity is low related to previous fixed QD, we can assign
new query directory for the group of mobile nodes for
updates. This was implemented using Ns2 and compared to
push-based and pull-based schemes for improving the
performance.
Index Items-Cache update, MANET, Prefetching, piggyback.

1 INTRODUCTION
In MANETs, the limited mobile devices are used, and the
nearest mobile are grouped to form a cluster form. In this
group contains different forms of mobile devices which
performs several operations. Here data caching is important
in this mobile environments. Some of nodes in groups act
as Query directory, which stored the directory of each
cache nodes in the networks. And the cache nodes, cache
the queries from the mobile nodes and process its and send
responses to the mobile nodes. Each cache nodes data items
are similar to the data source, where it provides strong
consistency between data source and cache nodes.
In[4] explains the cache consistency scheme, to maintain
cache consistency of data items in a cache that is time-to-
live, cache invalidation protocols, and client polling. Time-
to-live are efficient to set up the value for each data item.
Therefore, it is necessary to set the TTL field to a relatively
short interval and reload the object frequently to avoid
returning stale data. cache invalidation protocol that
describes in[1], it is the process of deleting invalidate date
in cache. A cache node changes a variable and then
invalidates the cached values of that variable.

Fig.1 mobile nodes

Fig.1 shows the mobile nodes are connected to interact with
each other to exchange the query to the nearest mobile
nodes. Client polling is the client node receives the query
from the server it process the query when the client is
active.

2 RELATED WORKS
In MANETs environments, major work has been done in
cache consistency scheme that are related to implements
push, pull and hybrid algorithms. In push based server
only update the cache nodes and then the pull based cache
update the data items and the hybrid both the operation has
been done.
Pull based scheme discussed into two categories:
prefetching and TTL.
2.1 Prefetching
Prefetching [3] it’s like a client polling, cache validation is
starts on client schedule 4].It provide to achieve a strong
consistency. Prefetching is based on the item request rate.
And it reduce the waits state because the each and every
time cannot visit the data source and increase the
availability. Here it provide minimal usage of data source.
In the prefetching scheme is to reduce the query delay and
query latency.
2.2 TTL
Many TTL approaches [5] are introduced for MANETs,
Here we used fixed TTL values are assigned for cached
data items. And several mechanisms are introduce for
assigning TTL values. First mechanism is adapted by the
last update time. This approach is used in dynamic
environments. Second approach is the value is calculated
by the difference between the query time and last update
time. This approach does not give the absolute solution.
Finally the TTL value is computed by TCP orientation.
Assigning the TTL value by two ways, one is to fixed
TTL[5] that mean the constant TTL value is assign for a set
of item in the cache. Another is adaptive TTL that provide
higher consistency along with lower traffic. TTL is a data
which stores in cache will be expired if it has not used
within threshold time since last update. It provides
simplicity, good performance and flexibility to assign TTL
values.
Algorithm
Function cache update
 If RN send DRP msg to DQ
 QD checks if the di is presented
 If di is presented
 The DRP msg forwarded to CN
 else

Jenilet J et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 721-723

www.ijcsit.com 721

 forwarded to nearest QD
 CN received the request and check di presented or not
 Suppose the di is presented send DERP msg to QD
 Otherwise
 Fetch the di from server
 Returns the DERP response to RN
End

3 SYSTEM METHODOLOGIES
3.1 Existing system Design
In the previous paper introduce server based scheme [6]. It
is the process of updating the cache data item by the data
source. Here the request gets from the requestor directly to
the data source, the data source does not maintain the
information about the client nodes. So it forward the
request to the all the cache nodes and the nodes update the
similar data to the data source. So the data source has
overhead processing and network delay will occur.
3.2 Proposed system Design
In this paper we proposes Decentralizes distributed cache
updating process, its totally a client based scheme[1]. Here
the Query directory collects all the cache node information
along with address in it’s the group, and the cache nodes
caches the query from the request nodes. Ca In this paper
exposes the algorithm called pull-based.
In this algorithm implements prefetcing, piggybacks and
TTL values [5][7]. Each data items in the cache nodes has
the TTL values which the value same to the data source
then the data item is unexpired. Suppose the data item is
not similar to data source then it treated as expired. So the
cache ask to the data source for updating and prefetch the
desired data item from the data source.che nodes contains
the already asked frequents data.

4 ARCHITECTURE AND OPERATIONS
This section implements interaction between different
components and syatem model.
4.1 system model
The system model consists of number of mobile nodes
connected to the MANETs and the each nodes are interact
with others using wireless connection using WiFi. It is the
access point to interact with them. The mobile nodes are
used to communicate with data source with use of multi-
hop communication.
The system architecture consists of Request node(RN),
Cache node(CN),and Query directoty((DQ). The RN gives
the request to the nearest QD’s. If this QD finds the query
in its cache, it forwards the request to the CN caching the
item, which, in turn, sends the item to the requesting node
(RN). Otherwise, it forwards it to its nearest QD[1], which
has not received the request yet. If the request traverses all
QD’s without being found, a miss occurs and it gets
forwarded to the server which sends the data item to the
RN.
The server autonomously sends data updates to the CNs,
meaning that it has to keep track of which CNs cache which
data items. This can be done using a simple table in which
an entry consists of the id of a data item (or query) and the
address of the CN that caches the data. If any request to the
CN caching the item, which, in turn, sends the item to the
requesting node (RN).

DCIM suspends server updates when it deems that they are
unnecessary. The mechanism requires the cache node to
monitor the rate of local updates, and the rate of RN
requests, for each data item. Each CN also monitors these
values for each data item that it caches. Whenever a CN
receives an update from the server.
This section describes the operation of cache updating, but
first we listed the messages in the DCIM table this is
implemented in COACS[1]. The RN sent the request to the
Query Directory it checks where the data items presented in
the CN.
4.2 Server Operation
When the server receives the CURP message from the CN.
The server checks all the item are compared to the last
update time. If the item have not changed then it is treated
as a valid and sent SVRP is send to the CN. Suppose the
data item have not similar to the server then it called as
invalidation. So server send SUPR message to the CN[6].
The server inform about this through the SVRP message. In
this approach is client based, the processing at the server is
minimal.

Fig 2 System model

4.3 QD operation
This section describes how the QD is assigned in this
system depending on the storage capacity. Here the number
of QDs are bounded in this based on the limits such as
lower and upper limits, where the QD elected[1] it will not
yield reduction in average QD load. The upper limits,
corresponds to a delay threshold.

RN1 RN2 RN3

QD

CN1 CN2 CN3

SERVER

Jenilet J et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 721-723

www.ijcsit.com 722

First we elected the maximum storage capacity node as QD
and its store all the address of the cache node information.
After it stores more CN information so the capacity is
reduced[2]. So we Introduced a concept as DDCUM that is
next compare to all the devices and then assign which one
has the maximum capacity that node assign as a QD. It
provides efficient way to maintain the system performance.
4.4 CN operation
The CN store the cached queries along with their responses
plus their IDs. A CN maintain all the information in two
tables that are cache information table which stores
responses of the queries are locally cached. And Query
information table that stores query specific data. The CN
checks for expired data items, validation request, and
request updates.
CN collects the frequently asked data and the received the
request get from the QD. CN assign TTL values[5] for each
data items and the value with the query if it is matched it as
VALID response to the RN. Suppose the data does not
matches then it as INVALID. Then the CN piggyback to
server and collect the valid data item. The CN prefetch[3]
the item from the server.

RESULTS

Fig 3 group formation

Fig 4 fixed QD

Fig 4 forward query to nearest QD

CONCLUSION

We introduced DDCUP is a client based scheme on
estimating the update intervals of data item to set their
expiry time. It use of piggybacking and prefetching to
increase the accuracy and reduce the both traffic and query
delays. DDCUP increase overall system performance.
In future plan, to replace TTL algorithm into running
average formula and to develop a complete replica
allocation.

REFERENCES
[1] H. Artail, H. Safa, K. Mershad, Z. Abou-Atme, N. Sulieman,

“COACS: A Cooperative and adaptive caching system for
MANETS”, IEEE TMC, v.7, n.8, pp. 961-977, 2008.

[2]G. Cao, “On Improving the Performance of Cache Invalidation
in Mobile Environments,” ACM/Kluwer Mobile Network
and Applications, vol. 7, no. 4, pp. 291-303, 2002.

[3] M. Denko, J. Tian, "Cooperative Caching with Adaptive
Prefetching in Mobile Ad Hoc Networks," IEEE
WiMob'2006, pp.38-44, June 2006.

[4] J. Cao; Y. Zhang, G. Cao, X. Li, "Data Consistency for
Cooperative Caching in Mobile Environments," Computer ,
v.40, n.4, pp.60-66, 2007

 [5] J. Jung, A.W. Berger, H. Balakrishnan, “Modeling TTL-based
internet caches,” IEEE INFOCOM 2003, San Francisco, CA,
March 2003.

[6] K. Mershad and H. Artail, “SSUM: Smart Server Update
Mechanism for Maintaining Cache Consistency in Mobile
Environments,” IEEE Trans. Mobile Computing, vol. 9, no.
6, pp. 778-795, June 2010.

[7] B. Krishnamurthy, C. Wills, “Study of piggyback cache
validation for proxy caches in the World Wide Web,”
USENIX, Monterey, CA, December 1997.

Jenilet J et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 721-723

www.ijcsit.com 723

